Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Curr Top Microbiol Immunol ; 439: 305-339, 2023.
Article in English | MEDLINE | ID: covidwho-2173657

ABSTRACT

Coronaviruses have a broad host range and exhibit high zoonotic potential. In this chapter, we describe their genomic organization in terms of encoded proteins and provide an introduction to the peculiar discontinuous transcription mechanism. Further, we present evolutionary conserved genomic RNA secondary structure features, which are involved in the complex replication mechanism. With a focus on computational methods, we review the emergence of SARS-CoV-2 starting with the 2019 strains. In that context, we also discuss the debated hypothesis of whether SARS-CoV-2 was created in a laboratory. We focus on the molecular evolution and the epidemiological dynamics of this recently emerged pathogen and we explain how variants of concern are detected and characterised. COVID-19, the disease caused by SARS-CoV-2, can spread through different transmission routes and also depends on a number of risk factors. We describe how current computational models of viral epidemiology, or more specifically, phylodynamics, have facilitated and will continue to enable a better understanding of the epidemic dynamics of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , SARS-CoV-2/genetics , COVID-19/genetics , Genome, Viral , Genomics , Life Cycle Stages
2.
Brief Bioinform ; 22(2): 642-663, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1343629

ABSTRACT

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel virus of the family Coronaviridae. The virus causes the infectious disease COVID-19. The biology of coronaviruses has been studied for many years. However, bioinformatics tools designed explicitly for SARS-CoV-2 have only recently been developed as a rapid reaction to the need for fast detection, understanding and treatment of COVID-19. To control the ongoing COVID-19 pandemic, it is of utmost importance to get insight into the evolution and pathogenesis of the virus. In this review, we cover bioinformatics workflows and tools for the routine detection of SARS-CoV-2 infection, the reliable analysis of sequencing data, the tracking of the COVID-19 pandemic and evaluation of containment measures, the study of coronavirus evolution, the discovery of potential drug targets and development of therapeutic strategies. For each tool, we briefly describe its use case and how it advances research specifically for SARS-CoV-2. All tools are free to use and available online, either through web applications or public code repositories. Contact:evbc@unj-jena.de.


Subject(s)
COVID-19/prevention & control , Computational Biology , SARS-CoV-2/isolation & purification , Biomedical Research , COVID-19/epidemiology , COVID-19/virology , Genome, Viral , Humans , Pandemics , SARS-CoV-2/genetics
3.
Viruses ; 12(12)2020 12 06.
Article in English | MEDLINE | ID: covidwho-967147

ABSTRACT

The International Virus Bioinformatics Meeting 2020 was originally planned to take place in Bern, Switzerland, in March 2020. However, the COVID-19 pandemic put a spoke in the wheel of almost all conferences to be held in 2020. After moving the conference to 8-9 October 2020, we got hit by the second wave and finally decided at short notice to go fully online. On the other hand, the pandemic has made us even more aware of the importance of accelerating research in viral bioinformatics. Advances in bioinformatics have led to improved approaches to investigate viral infections and outbreaks. The International Virus Bioinformatics Meeting 2020 has attracted approximately 120 experts in virology and bioinformatics from all over the world to join the two-day virtual meeting. Despite concerns being raised that virtual meetings lack possibilities for face-to-face discussion, the participants from this small community created a highly interactive scientific environment, engaging in lively and inspiring discussions and suggesting new research directions and questions. The meeting featured five invited and twelve contributed talks, on the four main topics: (1) proteome and RNAome of RNA viruses, (2) viral metagenomics and ecology, (3) virus evolution and classification and (4) viral infections and immunology. Further, the meeting featured 20 oral poster presentations, all of which focused on specific areas of virus bioinformatics. This report summarizes the main research findings and highlights presented at the meeting.


Subject(s)
Computational Biology , RNA Viruses/genetics , Virology , COVID-19 , Congresses as Topic , Evolution, Molecular , Genome, Viral , Humans , Metagenomics , RNA Viruses/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL